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From elementary steps to structural relaxation: A continuous-time random-walk analysis of a
supercooled liquid
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We show that the dynamics of supercooled liquids, analyzed from computer simulations of the binary
mixture Lennard-Jones system, can be described in terms of a continuous-time random walk (CTRW). The
required discretization comes from mapping the dynamics on transitions between metabasins. This yields a
quantitative link between the elementary step and the full structural relaxation. The analysis involves a veri-
fication of the CTRW conditions as well as a quantitative test of the predictions. The wave-vector dependence
of the relaxation time and the degree of nonexponentiality can be expressed in terms of the first moments of the

waiting time distribution.
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The dynamics of supercooled liquids is a very complex
process with many nontrivial features such as nonexponen-
tial relaxation, decoupling of diffusion and relaxation, sig-
nificantly correlated forward-backward processes (e.g., the
cage effect), and increasing length scales of relaxation, just
to mention some of the most prominent [ 1-3]. The complex-
ity of the dynamics originates from the highly cooperative
nature of the dynamical processes.

Several phenomenological models have been proposed
that attempt to describe the dynamics of supercooled liquids
in relatively simple terms, thereby implying some kind of
coarse-graining to get rid of the microscopic details of the
dynamics. In the free-energy [4—7] and the random first order
transition (RFOT) models [8] the system relaxes, possibly in
a multistep process, between different states. One prominent
example is the trap model [5,6], postulating a sequence of
escape processes where the waiting time 71in a configuration
is fully governed by its energy and the new configuration is
randomly chosen from the set of all possible configurations.
Thus, the dynamics is fully described by the waiting time
distribution ¢(7). Extending this model by the spatial aspects
of the relaxation processes one would, in its simplest version,
end up with a continuous-time random walk (CTRW). Note
that, in general, continuous-time random walks [6,9-11] as
well as the related Levy walks [12,13] are often used to
describe anomalous dynamic properties, characterized by
nontrivial power-law behavior of quantities such as the
mean-square displacement.

In recent years the facilitated spin models have been re-
vitalized to grasp the dynamics of supercooled liquids
[14-17]. They are thought to reflect the heterogeneous mo-
bility field of molecular glass-forming systems. One spin
corresponds to a small volume which is either unjammed or
jammed (spin up or down). The ability of a spin to flip is
exclusively governed by the orientation of the adjacent spins.
Self-diffusion has been introduced by postulating a random
walk of the particle with the chance to move if the old as
well as the new site is mobile [17-19]. This dynamics is also
described in terms of a CTRW, although for the model vari-
ant (East model) supposed to describe fragile systems a di-
rect mapping is not possible [18].

Use of the CTRW picture in the context of these phenom-
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enological models does not necessarily imply that it is of
relevance for microscopic glass-forming systems. Here we
analyze a binary mixture Lennard-Jones system (BMLJ), a
standard model of supercooled liquids [20], via computer
simulations. The goal of this work is threefold. First, we
explicitly show that the required conditions for the applica-
bility of the CTRW approach are satisfied to a very good
approximation. Second, we prove that the CTRW approach
allows one to obtain not only the wave-vector-dependent re-
laxation time (as already discussed, e.g., in [18]) but also the
nonexponentiality of relaxation. Third, the predictions are
verified by explicit comparison with the numerical simula-
tions.

We analyze a BMLJ system with N=65 particles at T
=0.5, which is slightly above the mode-coupling tempera-
ture. It has been shown that this system is large enough to
recover the diffusion constant without significant finite-size
effects in the range of temperatures accessible by computer
simulations [21,22]. Details of the model are described else-
where [20,21]. The discretization of the dynamics, required
for the application of the CTRW approach, results from the
use of inherent structures, i.e., local minima of the potential
energy landscape [23,24], or the use of metabasins (MBs)
[22,25]. Of particular relevance in this work is the incoherent
scattering function S(g,7)={(cos g[x(t+1y)—x(ty)]) where the
angular brackets denote the average over all particles and all
to. Furthermore, x(z) is the x coordinate of a particle. The first
decay at short times to a value f<<1 is due to the fast
B relaxation, whereas the long-time relaxation reflects the
« relaxation. It is often described by a Kohlrausch-Williams-
Watts (KWW) function f exp[—(t/ 7xww)?kWW]. When ana-
lyzing S(g,t) for the sequence of inherent structures rather
than actual configurations it turns out at temperatures close
to the mode-coupling temperature that the short-time decay
disappears and the decay is fully related to the « relaxation
with identical values Tgww, Brww [26]. Not surprisingly, the
same holds for the sequence of MBs (data not shown). From
now on, S(g,7) will represent the case of MBs, thereby de-
scribing the «a relaxation.

Two important observables enter the CTRW approach: (i)
the waiting time distribution ¢(7) and (ii) the probability
7 (x) that a particle during a transition between two MBs
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FIG. 1. (Color online) r;(x) for different values of the waiting
times before the corresponding MB transition. Within statistical un-
certainty 7;(x) does not depend on the waiting time.

moves a specific distance along some fixed direction (here
x). More generally, ,(x) expresses the corresponding prob-
ability after n MB transitions. The Fourier transform is de-
noted ,(g). Under conditions (C1)—(C3), which form the
basis of the CTRW approach and are discussed below, it is
possible to express S(g,t) in terms of ¢(7) and ,(g).

(C1) 1,(x) does not depend on the waiting time since the
previous transition. From the data in Fig. 1 the validity of
(C1) directly emerges. Only for the longest waiting times,
which have only a very low probability (as reflected by the
noise), minor deviations occur. As a consequence the spatial
and temporal contributions separate to a very good approxi-
mation and one can write

N
S(q.0) = lim Sy(q.1) = lim > S, () m,(q). (1)
—® —%p=0

Here S,(z) denotes the probability to have exactly n transi-
tions during time ¢. This is the central equation of the CTRW
because it expresses the total dynamics during time ¢ in terms
of discrete processes with well-defined probabilities.

(C2) Successive waiting times are statistically uncorre-
lated so that the time evolution can be regarded as a se-
quence of randomly chosen waiting times. This has already
been shown in Ref. [27]. Therefore S,(¢) can be expressed in
terms of the waiting time distribution ¢(7) [18,28] [see Eq.
(8) below]. Using the numerically determined ¢(7) and
7,(q), one can compare S(¢max»1), Obtained from simulation,
with the estimation Eq. (1) where ¢,y is the maximum of
the structure factor; see Fig. 2. The agreement is very good
except for minor deviations for very long times. Of the order
of 10> MB transition processes are required to have complete
relaxation. Due to the resulting average effect a possible vio-
lation of (C1) would not hamper the CTRW analysis.

(C3) Subsequent transitions are spatially uncorrelated.
The underlying Markov hypothesis can be formally written
as

71-n(x)=<fdx’7Tn—l(x,)77-1(-x_x’)~ (2)

In Fourier space this convolution reads
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FIG. 2. (Color online) Comparison of the actual incoherent scat-
tering function S(ga4,#) With the estimated function Sy(gmax,?) for
different values of N.

m,(q) = m(q)". (3)

Strict validity of (C3) implies among other things a linear
dependence of the mean square displacement (MSD) on the
number of MB transitions. However, in [21] a slightly non-
linear behavior has been observed [a>=lim, ,.(1/ n)<x2>wn
=0.005 differs from (x2>771=0.009 [21], using the notation
(xz)fE Jdx x*f(x)]. This deviation reflects the presence of
minor forward-backward correlations. However, due to the
local nature of forward-backward transitions, one may expect
that for length scales significantly beyond a the correlated
forward-backward jumps become irrelevant. To check this in
detail, we have analyzed the n dependence of m,(g), shown
in Fig. 3 for different values of the wave vector ¢. Interest-
ingly, for g=g,,,, the limiting behavior m(q)=[m,(q)]'"
=const is already reached for n=35, as reflected by the
straight line. For smaller ¢ values, Eq. (3) holds even better.
Since in the range of relevant ¢ values one has a’q”><1, the
term 7(g) can be approximated by 1—g°a®/2, using a simple
Taylor-expansion argument. Actually, using inherent struc-
tures rather than MBs, the large-n regime would be reached
only for n=~10% [21]. This would strongly invalidate (C3).
Using (C1)—(C3), and substituting all 7,(q) by 7(g), the
temporal Laplace transform of the incoherent scattering
function, i.e., S(g,\), can be calculated analytically, yielding
the Montroll-Weiss equation [9]. Unfortunately, the inverse

o———

10

'[Z05q
—-1.0q
5_1'5qmax
0 20 0

max

n

10

max

log = (q)+nlog (2r)

FIG. 3. (Color online) n dependence of r,(¢q) for different val-
ues of ¢.
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Laplace transform of S(g,\) cannot be analytically per-
formed to calculate S(g,7). Therefore we proceed in a some-
what different way. First, we define

To(q) = f dt S(q,1) (4)
and
2
Bulq) = ﬁ. (5)
f dr tS(q,1)

79(¢q) denotes the relaxation time at wave vector ¢ and S,
reflects the shape of S(q,?), based on the different moments.
Whereas for exponential relaxation one has pB,=1, it
decreases when S(g,7) decays in a nonexponential manner.
In case of KWW relaxation one has f,
=T2(1/ Bxww) /[ Bxwwl (2/ Bxww)] where T'(') denotes the T’
function (e.g., Bxww=1/2 corresponds to B,,=1/3). B,, de-
pends monotonically on Bgww- Thus, B,, is a measure of the
degree of nonexponentiality.

Our goal is to find simple expressions for 7y(¢) and B,,(q).
For this purpose one can introduce the persistence time dis-
tribution &(7). It denotes the probability that for a random
starting point in time the next transition occurs a time 7 later
[9,19]. Tt is related to the waiting time distribution via

&(7) =f dt' (') (7). (6)
Furthermore, it is related to Sy(z) via
So(t) = f ar'&(t'). (7)

For n>0 the Laplace transform of S,() is given by

S,(N) = EN2e(N)" (1), (8)

Straightforward calculation yields [dt S,(1)=S,(A=0)=(7),
for n>0. Note that for two functions, connected by f(z)
=[7dt’g(t"), one obtains

. _<I"+l>
("= mg )

This implies [dt Sy(1)=(7)s, i.e., the average persistence
time. Using again Eq. (9) it can be also expressed as
<72>¢>/<T><p' Note that (7)./(7),>1 for a broad waiting time
distribution, reflecting large dynamic heterogeneities.
Equivalently, this means that the time until the first transition
after a randomly chosen time takes much longer than the
typical time (7), between successive jumps.

Using Eq. (1) together with Egs. (3) and (9), one obtains
[18]

m(q) z@§+i

_ (D¢
@/ TIom@ (D, qd

{1y
We note in passing that (7), can be identified with the struc-
tural relaxation time 7, [18]. To determine the simulated
79(g) via integration over S(q,t) we first fitted S(g,7) by a

(10)
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FIG. 4. (Color online) ¢ dependence of (a) 7y(q) together with
its estimation via Eq. (10) and (b) of B,,(g) together with its esti-
mation. In the inset the validity of the theoretical expectation
(d/dq)Tg(q)=0 is tested.

sum of two stretched exponentials and then performed the
integration analytically.

In Fig. 4(a) we show the comparison with the simulated
data. We used (7);/(7),=27, as determined from the numeri-
cally determined waiting time distribution. The ¢ depen-
dence of 7y(g) is qualitatively similar to the data reported in
[29] and [30]. Note, however, that with the present definition
of 7y(¢) and the reference to the MB dynamics for the defi-
nition of ¢(7) and @?, a parameter-free prediction of the ¢
dependence becomes possible. At large g (§>> Gpax), the sys-
tem relaxes somewhat faster because the effective value of
a’® increases due to the relevance of forward-backward cor-
relations (see above). For smaller g, given by 1/¢*
z(7')§/<7')<paz/2, there is a crossover of 7y(g) from the
g-independent large-g limit to the small-g limit 7,(g)
=2(7),/(q*a*). Thus, for large dynamic heterogeneities, i.e.,
low temperatures, this crossover may happen at quite large
distances [18]. Similarly, these nontrivial features are also
reflected by a specific time evolution of the self-part of the
van Hove function G,(x,t) [31]. The deviations of G,(x,?)
from simple diffusion have been analyzed in detail in [32].

For the discussion of B,,(g) we first rewrite Eq. (5) as
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B, (q) = 1=Tgq)/7(q) (11)

with T(q)=[dt tS(q,t)—15(q). Following the standard deri-
vation of the Montroll-Weiss equation, one can show, after a
tedious but straightforward calculation with the ingredients
presented in this work, that (d/dq)Tz(q)=0 [28], i.e., T4(q)
=Tg. For the evaluation of Tz we choose the limit g —o°
where S(q,1)=S,(). Following Eq. (9) the first term equals
(72>§/ 2 whereas the second term is given by <T>§ ie.,

o= a2 (12)
which directly reflects the width of the persistence time dis-
tribution. Note that via Eq. (9) Tg involves the third moment
of the waiting time distribution ¢(7). Interestingly, the g de-
pendence of B,,(q) is fully governed by 7y(¢q). Thus, the de-
gree of nonexponentiality displays exactly the same cross-
over behavior as the relaxation time. A comparison of Egs.
(I1) and (12) with the numerical data is shown in Fig. 4(b),
showing again a good agreement. Actually, due to the ex-
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treme dependence of the third moment on the fine details of
the long-time behavior of ¢(7), a precise estimation of Tg
from ¢(7) is not possible. Again, the deviations at large ¢
reflect the more complicated dynamics at short length scales.
The deviations for small g come from the trivial fact that
Tg(q) results from a difference of two very large numbers
which, because of the nearly exponential behavior, are very
similar.

In summary, the present work has shown that the CTRW
approach, more or less explicitly used in different models of
the glass transition, can indeed be numerically derived for an
atomic glass-forming system. This shows that after an appro-
priate coarse-graining procedure (here, the metabasins) the
complex dynamics of supercooled liquids is fully determined
by the properties of the elementary steps. On a lower level of
coarse graining, namely, the inherent structures, (C3) and
thus the CTRW approach are strongly violated.
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